中信建投证券研究所所长武超则预测,2025年国内算力最大的机会仍在国产化,AI应用需求将持续增长。
02武超则认为,AI视频、Agent和AI终端是C端应用的三大赛道,未来可能迎来大的行情和泡沫化行情。
03除此之外,武超还指出,AI广告领域虽然技术含量不一定高,但更高的标记和匹配能力为商业模式带来了升级。
04同时,国产模型在迅速迭代,未来10-20年技术交叉发展将带来更大的投资机会。
11月28日,新财富白金分析师、中信建投证券研究所所长武超则,在华安基金投资嘉年华科技创新专场中,以“国产算力水到渠成,AI应用落地生根”为题,围绕当前AI行业的发展与投资机会分享了最新观点。
武超则表示,展望 2025 年,国内算力最大的机会,还是在国产化这条线上;
算力本身的需求,会继续增长的趋势还是非常明确的,她还简单拆解了一下可能的增量来源。
武超则把出货量作为衡量一家公司的重点所在,在芯片行业,规模是一切的根本。
在国产模型迭代的方向上,就C端而言,主要看好三个方向——AI视频 、Agent和AI终端。
简单看,从去年Sora出来之后,国内跑得也很快,像海螺AI、豆包等等,其实都有对标的产品出来,而且在海外出海的认可度也是非常高的
已经开始有一些应用的百花齐放,并且已经见到情绪投资的热点,但是我们可能没办法区分,到底哪个公司会最终跑出来。
武超则表示,未来在AI方面,我们一定会经历一轮大的行情,甚至是泡沫化的行情。
例如最近热门的“智能体”(Agent)概念、AI终端、个人助理等等,表现在不同的业务场景和载体中。
以Siri为例,在升级后,它的功能不再仅限于基本操作,现在它可以跨应用进行操作,
但其背后,依然围绕大模型强大的工具功能,这也是GPT-4这代模型的主流表现。
再往后,我们看到,不仅是大模型本身的演进,更多的是多模型、多模态的演进;
这个时候我们可能才会看到,模型的应用从过去的非严肃场景逐步转向严肃场景,
以Agent 本身和GPT-4o和o1这些后期模型来看,这一代模型的核心变化就是,从“快思考”向“慢思考”转变。
当遇到推理类、逻辑类问题时,我们往往需要更深入的分析路径或框架,我们需要一套更强的方法论来帮助我们解决问题、理解问题,并最终做出决策。
尤其是在面对互相矛盾的数据时,我们如何判断哪种结论更为正确,如何做出最佳选择,等等。
最近,资本市场的热点也开始集中在ToB的营销服务、办公服务、ERP等场景上,这些已经开始在业绩和财报中得到体现。
如果从时间的角度来看,AI的发展就像一个两三岁的baby,像人类一样,它一定会无限的迭代下去。
总而言之,在整个模型的变化中,前面几年,我们已经经历了第一段、第二段到第三段的演绎。
我们看到,GPT-4o这一代模型,在端到端的信息处理,以及人机交互体验上都有显著提升。
与GPT-4相比,GPT-4o并不一定在输出结果上有惊艳的突破,但在易用性方面的提升却是显著的。
举个例子,GPT-4o在响应速度上比GPT-4 Turbo提高了两倍,同时它的消息上限提升了5倍,价格降低了50%。
相比性价比已经很高的4o,4o mini做得更快、更便宜,其实它的核心优势还是在降成本和性能的保留上。
与之前的模型相比,o1的核心还是要证明“规模效应”(scaling law)的存在——模型的规模越大,模型越聪明。
理论上,o1模型证明,只要愿意投入更多的成本,增加算力和数据的投入,模型的“聪明程度”依然能够继续叠加。
我们看到,o1模型的表现已经不亚于博士生水平,特别是在一些挑战性任务中。
例如,在国际数学奥林匹克(IMO)考试中,GPT-4o的正确率仅为13%,而o1的正确率高达83%。
海外Meta推出的Llama 3,还有国内的开源模型,如通义千问和智普,都是同等代际的开源模型。
举个例子,相比于过去的模型是一个“人”,Agent更多是一个团队或者说小组的概念。
Agent是要有一个分析问题、理解问题,最后去解决问题的总揽能力,根据任务来准确地生成业务的执行流,然后再分工给不同的专家模型。
有的擅长解决数学问题,有的擅长解决代码问题,有的擅长解决图像问题等等,最终形成一个协作的智能群体。
这个时候,个性化方案的生成成本会大幅降低,模型与模型之间的摩擦成本也会大幅降低。
比如说在医疗行业,现在多学科的会诊,随着现代医疗越来越细分,也变得很常见。
回过头来看,我们展望 2025 年,国内算力最大的机会,还是在国产化这条线上。
scaling law的核心就是,不管是基于训练的需求,还是推理的需求,模型越大,效果就越好。
我们现在看下来,如果想要在大模型的训练端有所建树,至少是要万卡,甚至未来是 10 万卡的集群,这一部分的投入是非常明确的。
比如说,未来更多在推理场景上,对计算的能力要求没有那么高,但可能对存储、对通信的能力要求会更高。
这个时候,基于底层算力的结构,即便总的市场是确定的,但是它结构会略有差异。
对于算力本身的需求,还是会继续往上去增长的,这样一个趋势还是非常明确的。
看似技术门槛没有那么高,但是我们判断,明年可能会带来实实在在的投资的增量。
所以我自己觉得,也不仅仅是盯着芯片这一个东西,更多需要站在整个产业链又一代的投资上去看这问题。
而且对于先进芯片,其实这两年,它的制裁不仅仅是在算力的通信或者是计算能力上的限制,开始更多到算力密度的指标。
GPU 本身,包括再往上游的半导体的设备和材料,我想明年都会有不错的表现。
我们看到在游戏领域、办公领域、教育、电商、视频,包括终端以及Agent 领域,都有大量的应用公司冒出来。
而且我们看海外,它确实经历了从流量效应开始逐步体现到财报上,它实实在在开始有业绩了。
现在底层模型,比较不错的,像视频类的豆包,月之暗面的Kimi 等等,它足以去支撑应用场景,比如说音乐、影视、教育、电商等等。
我们简单归纳一下,从已经出来的结果来讲,对标来看,B端应用其实似乎比C端的落地更快。
C 端其实是访问量和流量在持续增长,但是从商业模式上,其实 B端好像闭环的更快一些。
比如说AppLovin,现在实际上已经是一个千亿美金市值的这样一个公司,而且今年以来涨了 6 倍。
所以,从结果上来看,海外主要体现在这些 AI 助手、AI 搜索、AI 视频方面。
国内发展比较快的也是 AI 搜索、AI 视频、AI助手,这一类相关的也有很多上市公司。
这是我们看到的AppLovin这家公司业绩持续超预期,毛利率提升的一个很重要的原因。
同样像Meta,Shopify,其实都是类似的,还是原来的那些公司,但是因为有了这样的工具,
要么内部降本,要么增效,在客户的落地上、营销的效果上,有了更加直接的体现。
还有像 Salesforce,这家公司其实大家应该非常熟悉,在SaaS 时代,他就是一家明星公司,主要推出的是 Agent 客服,就是说一个人可能就能提供整个团队的作用。
以前需要 10 个人的团队,现在一个人从设计网站到客服到铺库存等等,都能实现。
从这个背后我们看到,美股现在有一个大的趋势,就是所有的SaaS公司,可能都要去上AI 相关的功能。
另外,在数据服务方面,Palantir其实也是一家非常有意思的做数据分析的公司。
其实核心还是在私有化部署,包括类似于数据分析的效率上、交互上都有比较明显的提升。
简单看,从去年Sora出来之后,国内跑得也很快,像海螺AI、豆包等等,其实都有对标的产品出来,而且在海外出海的认可度也是非常高的。
在 AI 视频的场景下,灯笼可以随意被替换为一个气泡,背景可以随时被变成森林或者什么东西,
国产模型在迅速迭代,我们觉得在方向上,C端我们比较看好的三个方向——AI视频 、Agent 和 AI 终端。
所以我觉得,最终就是,我们要以未来10-20年这样一个维度去看这些技术的交叉发展。
从移动互联网那一轮来看的话,去年我觉得可能更像 2012 年——基础的硬件有了,但是应用在哪不知道。
而且情绪投资的热点已经起来了,但是我们可能没办法区分,到底哪个公司会最终跑出来。CQ9电子游戏平台推荐CQ9电子游戏平台推荐